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University in Prague, Břehová 7, CZ-115 19 Prague, Czech Republic

E-mail: jiri.tolar@fjfi.cvut.cz and goce.chadzitaskos@fjfi.cvut.cz

Received 1 April 2009
Published 28 May 2009
Online at stacks.iop.org/JPhysA/42/245306

Abstract
Our previous work on quantum mechanics in Hilbert spaces of finite dimension
N is applied to elucidate the deep meaning of Feynman’s path integral pointed
out by G Svetlichny. He speculated that the secret of the Feynman path integral
may lie in the property of mutual unbiasedness of temporally proximal bases.
We confirm the corresponding property of the short-time propagator by using
a specially devised N × N approximation of quantum mechanics in L2(R)

applied to our finite-dimensional analogue of a free quantum particle.

PACS numbers: 03.65.−w, 03.67.−a, 03.65.Ca, 03.65.Ta

1. Introduction

The circle of ideas which generated Feynman path integrals is contained in works by Dirac
and Feynman [1, 2]. Especially in the latter work the representation of quantum mechanical
evolution amplitudes in terms of heuristic integrals on ‘path space’ was developed into an
alternative general formulation of quantum dynamics, equivalent to the previous formulations
by Heisenberg, Schrödinger or Schwinger.

The miraculous success of Feynman’s method in dealing with quantum fields should be,
however, mitigated by the fact that there is so far no rigorous way to define it in terms of
conventional measure theory. Namely, the heuristic expression for Feynman path integrals is
in terms of a complex formal density which does not define a measure. Thus the mathematical
definition of the objects understood under the name of Feynman path integrals posed genuine
new problems which have been attacked by different methods. For instance, Feynman’s path
integral in non-relativistic quantum mechanics is conventionally viewed as a formal expression
which can be given meaning by a specially devised limiting process.

The diverse aspects and approaches make clear that the subject of Feynman path integrals
should not be considered as a closed one, on the contrary, much work is needed on the
conceptual mathematical and physical level in order to bring to fruition all the beautiful
potentialities contained in those ideas. In this direction it was recently speculated by Svetlichny
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[3, 4] that the secret of the path integral may rest on the mutual unbiasedness of temporally
proximal bases. He focused the essential problems into the following questions:

(i) For what unitary groups U(t) in L2(Rn) do the position bases at times 0 and t tend to
mutual unbiasedness as t → 0?

(ii) Is there a discrete version of the previous question in a finite-dimensional Hilbert space
which approximately simulates the propagation of a free particle?

(iii) What is the information-theoretic nature of the normalization factor A in the short-time
propagator?

In this paper we elucidate the true meaning of these questions in the case of a non-relativistic
quantum particle on the real line.

In section 2 we recall related notions of complementary observables and of mutually
unbiased bases. Then the basic concepts of quantum mechanics in finite-dimensional Hilbert
spaces are introduced in section 3. Section 4 is devoted to the construction of finite quantum
phase space from the finite Heisenberg group. The group of inner automorphisms of finite
quantum phase space is described in section 5. After these prerequisites, the N × N

approximation of quantum mechanics on the real line is constructed in section 6 and applied to
an analogue of a free non-relativistic particle. This approximation, being used in the Feynman
short-time propagator (section 7) leads to the emergence of a Lagrangian as the corresponding
local phase and at the same time demonstrates mutual unbiasedness of temporally proximal
bases (section 8). Our derivation also yields the normalization factor A as a direct counterpart
of the constant 1/

√
N involved in the definition of mutual unbiasedness.

2. Complementarity and mutually unbiased bases

Mutually unbiased bases in Hilbert spaces of finite dimensions are closely related to the
quantal notion of complementarity. Namely, two observables A and B of a quantum system
with Hilbert space of finite dimension N are called complementary [5], if their eigenvalues are
non-degenerate and any two normalized eigenvectors |ui〉 of A and |vj 〉 of B satisfy

|〈 ui |vj 〉| = 1√
N

.

Then in an eigenstate |ui〉 of A all eigenvalues b1, . . . , bN of B are measured with equal
probabilities, and vice versa. This means that exact knowledge of the measured value of A

implies maximal uncertainty to any measured value of B.
According to Wootters [6], two orthonormal bases in an N-dimensional complex Hilbert

space

{|ui〉|i = 1, 2, . . . , N} and {|vj 〉|j = 1, 2, . . . , N}
are called mutually unbiased, if inner products between all possible pairs of vectors taken from
distinct bases have the same magnitude 1/

√
N ,

|〈 ui |vj 〉| = 1√
N

for all i, j ∈ {1, 2, . . . , N}.

Thus if the system is in the state |ui〉, then transitions to any of the states |vj 〉 have equal
probabilities.

It is important to note that, in an N-dimensional Hilbert space, there cannot be more than
N + 1 mutually unbiased bases. It has also been proved that the maximal number of N + 1
mutually unbiased bases is attained, if N is a power of a prime [7].
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3. Quantum mechanics in finite-dimensional Hilbert spaces

The mathematical arena for ordinary quantum mechanics is, due to Heisenberg’s commutation
relations, the infinite-dimensional Hilbert space. A useful model for quantum mechanics in
a Hilbert space of finite dimension N is due to Weyl [8]. Its geometric interpretation as the
simplest quantum kinematic on a finite discrete configuration space formed by a periodic
chain of N points was elaborated by Schwinger [9]. In [10] we proposed a group theoretical
formulation of this quantum model as well as a finite-dimensional analogue of the quantum
evolution operator for a free particle.

In an N-dimensional Hilbert space with orthonormal basis B = {|0〉, |1〉, . . . |N − 1〉} the
Weyl pair of unitary operators (QN, PN) is defined by the relations

QN |ρ〉 = ω
ρ

N |ρ〉, ρ = 0, 1, . . . , N − 1,

PN |ρ〉 = |ρ − 1 (mod N)〉,
where ωN = exp(2πi/N) [8] (see also [11, 12]). If B is the canonical basis of C

N , the
operators QN and PN are represented by the matrices

QN = diag
(
1, ωN, ω2

N, . . . , ωN−1
N

)
and

PN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0

...
. . .

0 0 0 · · · 0 1

1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

They fulfil a commutation relation

PNQN = ωNQNPN, (1)

which is analogous to the relation for Weyl’s exponential form of Heisenberg’s commutation
relations. Further, P N

N = QN
N = IN , ωN

N = 1.
The finite Heisenberg group is generated by ωN,QN and PN :

�N = {
ωl

NQ
j

NP σ
N

∣∣l, j, σ = 0, 1, 2, . . . , N − 1
}
.

It consists of N3 unitary N × N matrices and is also called the Pauli group.
The geometrical picture behind the above operators is the following [10]. The

cyclic group ZN = {0, 1, . . . N − 1} is the configuration space for N-dimensional quantum
mechanics. Elements of this periodic chain ZN provide labels of the vectors of the basis
B = {|0〉, |1〉, . . . |N − 1〉} with the physical interpretation that |ρ〉 is the (normalized)
eigenvector of position at ρ ∈ ZN . The action of ZN on ZN via addition modulo N is
represented by unitary operators U(σ) = P σ

N . The action of these discrete translations on
vectors |ρ〉 from basis B is given by

U(σ)|ρ〉 = P σ
N |ρ〉 = |ρ − σ (mod N)〉.

The important discrete Fourier transformation is given by the unitary Sylvester matrix
SN with elements

(SN)kρ = 〈 ρ|k〉 = ω
ρk

N√
N

.
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The operator relation

S−1
N PNSN = QN

shows that the discrete Fourier transform diagonalizes the momentum operator. In other words,
it performs the transition from the coordinate representation to the momentum representation:

|k〉 =
N−1∑
ρ=0

|ρ〉〈 ρ|k〉.

4. Finite quantum phase space

The following developments will heavily use the finite phase space �N which is simply related
to the finite Heisenberg group [13]. The centre Z(�N) of the finite Heisenberg group is the
set of all those elements of �N which commute with all elements in �N

Z(�N) = {(l, 0, 0)|l = 0, 1, . . . , N − 1} .

Since the centre is a normal subgroup, one can go over to the quotient group �N/Z(�N). Its
elements are the cosets labelled by pairs (j, σ ), j, σ = 0, 1, . . . , N − 1. The quotient group
can be identified with the finite phase space

�N = ZN × ZN, N = 2, 3, . . . .

To simplify the notation, we denote the cosets corresponding to elements (j, σ ) of the phase
space �N by QjP σ without subscripts N :

QjP σ = {
ωl

NQ
j

NP σ
N

∣∣l = 0, 1, . . . , N − 1
}
.

The correspondence

φ : �N/Z(�N) → �N = ZN × ZN : QjP σ �→ (j, σ )

is an isomorphism of Abelian groups, since

φ((QjP σ )(Qj ′
P σ ′

)) = φ((QjP σ ))φ((Qj ′
P σ ′

)) = (j, σ ) + (j ′, σ ′) = (j + j ′, σ + σ ′).

The group of automorphisms of the quantum phase space �N was studied in [13, 14].
The latter paper considered—instead of cosets—the one-dimensional grading subspaces of the
Pauli-graded Lie algebra gl(N, C) and studied their transformations under the automorphisms
of gl(N, C). The subgroup of inner automorphisms was induced by the action

ψX(A) = X−1AX

of matrices X from GL(N, C).
Along the same lines we consider those automorphisms of the above form, acting on

elements of �N , which induce permutations of cosets in �N/Z(�N). Operators X which
induce these automorphisms are unitary. Explicit forms of these operators are given in [13]
for N prime and in [14] for arbitrary N but only for special transformations of �N .

Automorphisms ψ of the given form are equivalent if they define the same transformation
of cosets in �N/Z(�N):

ψY ∼ ψX ⇔ Y−1QjP σY = X−1QjP σX

for all (i, j) ∈ ZN ×ZN . The group �N/Z(�N) has two generators, the cosets P and Q. Hence
if ψY induces a transformation of �N/Z(�N), then there must exist elements a, b, c, d ∈ ZN

such that

Y−1QY = QaP b and Y−1PY = QcP d.
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It follows that to each equivalence class of automorphisms ψY a quadruple (a, b, c, d) of
elements in ZN is assigned. Then we have the following theorem.

Theorem 1 [14]. There is an isomorphism 
 between the set of equivalence classes of inner
automorphisms ψY and the group SL(2, ZN) of 2 × 2 matrices with determinant equal to
1 modulo N ,


(ψY ) =
(

a b

c d

)
, a, b, c, d ∈ ZN ;

the action of these automorphisms on �N/Z(�N) is given by the right action of SL(2, ZN)

on the phase space �N = ZN × ZN ,

(j ′, σ ′) = (j, σ )

(
a b

c d

)
.

5. N × N approximation of quantum mechanics on the real line

An interesting approximation method in quantum mechanics was proposed in Husstad’s Dr.ing.
thesis [15] supervised by T Digernes at NTNU Trondheim. Their approach was inspired by
an idea of Schwinger [16].

They approximate quantum operators in L2(R) for one-dimensional quantum systems
by N × N matrices—operators in the Hilbert space l2(ZN) of finite-dimensional quantum
mechanics. To this end an auxiliary factor

ηN =
√

2π

N

is introduced. We have found that for our purpose of approximating the Feynman path integral
it is still necessary to introduce two additional dimensional quantities: the length unit a and
the corresponding unit of linear momentum h̄/a. Then the position operator is approximated
by the multiplication operator in position representation

qN |ρ〉 = aηNρ|ρ〉.
For the momentum operator pN Schwinger had the real insight to define it as the discrete
Fourier transform of qN , implying that pN has not the form of the generally used difference
operator. Thus the momentum operator is approximated by the multiplication operator in the
momentum representation

pN |k〉 = h̄

a
ηNk|k〉.

Schwinger’s geometric idea was to identify ZN with a grid in R. For N odd, he defined a
sequence of grids LN = {aηNρ|ρ = 0,±1, . . . ,±(N − 1)/2}. In the limit N → ∞ the grids
are becoming denser and at the same time extending to the whole real line. The grid serves to
embed the finite-dimensional Hilbert space l2(ZN) isometrically in L2(R, dq) by the map

I : |ρ〉 �→ φρ(q) = a− 1
2 η

− 1
2

N χ[aηN (ρ− 1
2 ),aηN (ρ+ 1

2 )](q),

where χS denotes the characteristic function of a subset S ⊂ R. The position eigenvectors |ρ〉
are thus mapped onto narrow normalized wavefunctions φρ(q) on the real line, centred at the
grid points and contracting in the limit N → ∞. Under the map I the normalizations of the
wavefunctions |ψ〉 = ∑

ρ ψρ |ρ〉 and (Iψ)(q) are related by

|ψρ |2 = aηN |(Iψ)(aηNρ)|2.
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6. The finite-dimensional analogue of a quantum free particle

The finite-dimensional analogue of a quantum free particle was formulated in [10] as a discrete
Galilean evolution along a finite closed linear chain. The single-step unitary time evolution
operator CN proposed there is diagonal in the momentum representation

〈j |CN |k〉 = δjkω
−k2

N .

Transformation to the position representation gives

(CN)ρσ =
∑
jk

〈 ρ|j 〉〈j |CN |k〉〈 k|σ 〉 = 1

N

N−1∑
j=0

ω
−j 2+(ρ−σ)j

N .

The unitary operator CN fulfils the relations

C−1
N QNCN = ωNQNP 2

N, C−1
N PNCN = PN.

Looking at the free evolution in continuous phase space, we arrive at the conclusion that
the operator CN should be slightly modified. However, first consider the usual one-parameter
group of unitary operators

T (t) = exp

(
− i

h̄

p̂2

2m
t

)
, t ∈ R,

describing quantum evolution of a non-relativistic free particle of mass m on the real line. The
corresponding N × N approximation is

TN(τ) = exp

(
− i

h̄

p2
N

2m
τε

)
, τ ∈ Z,

where we have introduced a time unit ε, since dynamically defined time intervals will play a
special role. Thus t shall be restricted to integer multiples τε, τ ∈ Z, of ε. The time unit ε

will be chosen so that (in the momentum representation)

TN(τ)|j 〉 = exp

(
− i

h̄

1

2m

(
h̄

a
ηNj

)2

τε

)
|j 〉 = ω

− 1
2 j 2τ

N |j 〉, τ ∈ Z,

including an additional 1/2 factor in the exponent.1 Our choice is in agreement with a
dynamical relation

ε = ma2

h̄
or m

a

ε
= h̄

a

expressing the natural fact that a particle of momentum h̄/a traverses the distance a in time ε.
Transformation to the position representation gives

TN(τ)ρσ =
∑
jk

〈 ρ|j 〉〈j |TN(τ)|k〉〈 k|σ 〉 = 1

N

N−1∑
j=0

ω
− 1

2 j 2τ+(ρ−σ)j

N .

Now in order to justify the factor of 1/2 in the exponent recall that the free time evolution
in continuous phase space R

2 is described by translations along q with constant velocity,

q(t) = q(0) +
p(0)

m
t, p(t) = p(0).

The corresponding single-step ‘translation’ in quantum phase space �N ,

Q �→ QP, P �→ P

1 Non-integer powers of ωN are understood as complex exponentials ωw
N = exp( 2πi

N
w), w ∈ R.
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is equivalent to the following SL(2, ZN) transformation

(1, 1) = (1, 0)

(
1 1
0 1

)
, (0, 1) = (0, 1)

(
1 1
0 1

)
.

Its powers form an Abelian subgroup of SL(2, ZN) isomorphic to ZN . An easy calculation
shows that it is implemented by the unitary transformation

TN(1)|j 〉 = ω
− 1

2 j 2

N |j 〉 = CN1|j 〉,
which, from now on, will be denoted CN1. The modified unitary operator CN1 now fulfils the
relations

C−1
N1QNCN1 = ω

1
2
NQNPN, C−1

N1PNCN1 = PN, C−s
N1Q

ρ

NP
j

NCs
N1 = ω

1
2 ρ2s

N Q
ρ

NP
ρs

N .

7. N × N approximation of the Feynman path integral

Let |q(0), 0〉 and |q(t), t〉 be the state vectors of the initial state and of the final state of a
particle on R at times 0, t , respectively. If S[q] is the classical action functional of the particle,
the evolution amplitude is according to Feynman formally written as a path integral [2]

〈 q(t), t |q(0), 0〉 =
∫

e
i
h̄
S[q]Dq(t).

It is understood as a sum over all continuous paths in configuration space. According to
Feynman’s principle of equivalence of trajectories, the contribution of each path should have
the same absolute value, and hence contributes to the sum only a phase factor with the phase
given by the classical action in units h̄ evaluated along the path.

In quantum mechanics, the path integral is traditionally defined as a limit via discretization
based on the division of the time interval, e.g. into n intervals of equal duration ε = t/n. The
evolution amplitude is thus written as a multiple integral [2]

〈 q(t), t |q(0), 0〉 =
∫ +∞

−∞
. . .

∫ +∞

−∞
〈q(t)|e− i

h̄
Hε|qn−1〉 dqn−1 . . . dq1〈q1|e− i

h̄
Hε|q(0)〉,

where ql = q(lε) and H is the Hamilton operator. Each factor—the short-time propagator—is
then identified with an exponential of the short-time action involving an approximation of the
classical Lagrangian,

〈ql+1|e− i
h̄
Hε|ql〉 = 1

A
e

i
h̄
L(ql+1,ql )ε,

with normalization factor A. For instance, for a non-relativistic particle of mass m

H = p̂2

2m
+ V (q̂),

and one computes (via the momentum representation)

1

2πh̄

∫ ∞

−∞
exp

(
i

h̄

(
pl

ql+1 − ql

ε
− p2

l

2m
− V (ql)

)
ε

)
dpl

=
(

2πih̄ε

m

)− 1
2

exp

(
i

h̄

(
1

2
m

(
ql+1 − ql

ε

)2

− V (ql)

)
ε

)
, (2)

i.e.

L(ql+1, ql) = 1

2
m

(
ql+1 − ql

ε

)2

− V (ql) and A =
(

2πih̄ε

m

) 1
2

.

7
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A sequence of ql’s for each tl shall, in the limit, define a path of the system and each of the
integrals is to be taken over the entire range available to each ql . In other words, the multiple
integral is taken over all possible paths.2

Let us return to our analogue of a free non-relativistic particle. The above approach will
guide us in our N × N approximation with the short-time propagator induced by the unitary
operator CN1. In this approximation ql ≈ aηNρl , so, for a single time step, 〈 ql+1, ε|ql, 0〉 is
approximated by

〈 ql+1, ε|ql, 0〉aηN = 〈ql+1|e− i
h̄
Hε|ql〉aηN = 〈ρl+1|CN1|ρl〉 = 1

N

N−1∑
jl=0

ω
− 1

2 j 2
l +(ρl+1−ρl)jl

N .

For τ time steps

〈 ρτ , τε|ρ0, 0〉 =
∑

ρ1,...,ρτ−1

〈ρτ |CN1|ρτ−1〉 . . . 〈ρ1|CN1|ρ0〉 = 〈ρτ |Cτ
N1|ρ0〉

= 1

N

N−1∑
j=0

ω
− 1

2 j 2τ+(ρτ −ρ0)j

N .

The above Gauss-like sum for a single time step can be summed up using Siegel’s
reciprocity formula for generalized Gauss sums [17–19]

|c|−1∑
n=0

eπi(an2+bn)/c =
√∣∣∣ c

a

∣∣∣eπi(|ac|−b2)/(4ac)

|a|−1∑
n=0

e−πi(cn2+bn)/a,

valid for a, b, c ∈ Z, ac �= 0, ac + b even. Putting a = N with N odd, c = 1, n = jl and
b = −2ρ − 1 with ρ = ρl+1 − ρl one obtains

1

N

N−1∑
jl=0

ω
− 1

2 jl (jl−1)+(ρl+1−ρl)jl

N = 1√
iN

ω
1
2 (ρl+1−ρl+ 1

2 )2

N .

On the basis of this formula we prefer the operator

CN2|j 〉 = ω
− 1

2 j (j−1)

N |j 〉
for unitary single-step time evolution. It satisfies simpler relations than CN1,

C−1
N2QNCN2 = QNPN, C−1

N2PNCN2 = PN, C−s
N2Q

ρ

NP
j

NCs
N2 = Q

ρ

NP
ρs

N ,

while inducing the same Abelian subgroup of translations of quantum phase space. With
operator CN2 we compute in the position representation

〈ρl+1|CN2|ρl〉 = 1√
iN

ω
1
2 (ρl+1−ρl+ 1

2 )2

N .

This result can be interpreted as the emergence of a dimensionless Lagrangian LN ,

〈ρl+1|CN2|ρl〉 = 1√
iN

ω
LN (ρl+1,ρl )

N , LN(ρl+1, ρl) = 1

2

(
ρl+1 − ρl +

1

2

)2

.

In order to go over to the 1 + 1 space time and obtain the corresponding local Lagrangian LN ,
we divide by aηN and express the short-time propagator

〈 ql+1, ε|ql, 0〉= 1

aηN

〈ρl+1|CN2|ρl〉= 1

aηN

1√
iN

ω
1
2 (ρl+1−ρl+ 1

2 )2

N =
(

2πih̄ε

m

)− 1
2

e
i
h̄

1
2 m(

ql+1−ql +
aηN

2
ε

)2ε.

2 Recall a quotation from Feynman’s thesis (p 69 of [1]): ‘A point of vagueness is the normalization factor, A. No
rule has been given to determine it for a given action expression. This question is related to the difficult mathematical
question as to the conditions under which the limiting process of subdividing the time scale, required by equations
such as (68), actually converges.’

8
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This result can be rewritten as

1√
iN

ω
LN (ρl+1,ρl )

N =
(

2πih̄ε

m

)− 1
2

e
i
h̄
LN (ql+1,ql )εaηN,

where the phase factor appearing in the short-time propagator is seen to define the
corresponding small increment of the action LNε which is proportional to the local Lagrangian

LN = 1

2
m

(
ql+1 − ql + aηN

2

ε

)2

.

Note that in the limit N → ∞, we have ηN = √
2π/N → 0 and obtain the usual form of the

short-time propagator for the free quantum particle.
We close this section with a one-dimensional particle moving in a potential field V (q).

This potential has been incorporated in the short-time propagator (2). To get its N × N

approximation, the potential V (q) is sampled only at the grid points ql = aηNρl, ρl =
−(N − 1)/2, . . . , (N − 1)/2. In order to transform V (ql) into a dimensionless form it should
be expressed in the energy unit

1

m

(
ηN

h̄

a

)2

= 2π

N

h̄

ε

used for transforming the kinetic energy to j 2/2,

V (ql) = V (aηNρl) = 2π

N

h̄

ε
wl.

As a result, the potential is represented by a set of N dimensionless constants wl . Thus the
short-time propagator obtained for a free particle is subject only to a slight modification by
constants wl :

〈 ql+1, ε|ql, 0〉 = 1

aηN

〈ρl+1|CN2ω
−wl

N |ρl〉 = 1

aηN

1√
iN

ω
1
2 (ρl+1−ρl+ 1

2 )2−wl

N

=
(

2πih̄ε

m

)− 1
2

exp

(
i

h̄

[
1

2
m

(
ql+1 − ql + aηN

2

ε

)2

− V (ql)

]
ε

)
.

Also in these formulae the emergence of a local Lagrangian is clearly manifest.

8. The short-time propagator and mutually unbiased bases

Let us denote the bases composed of eigenvectors of the operators Q
j

NP σ
N by B(j,σ ). The

unitary operator CN2 (or CN1) plays an analogous role to operator DN in our previous study of
mutually unbiased bases for prime N [20]. There the iterations of DN generated the maximal
set of N + 1 mutually unbiased bases

B(1,0)

SN→ B(0,1)

DN→ B(1,1)

DN→ B(2,1)

DN→ . . .
DN→ B(N−1,1),

starting with the canonical basis B(1,0).

If N is prime, identical reasoning to that in [20] shows that the iterations of the unitary
operator CN (indices 1 or 2 omitted) generate in a similar way another maximal set of N + 1
mutually unbiased bases

B(0,1)

S−1
N→ B(1,0)

CN→ B(1,1)

CN→ B(1,2)

CN→ . . .
CN→ B(1,N−1),

9
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now starting with the momentum basis B(0,1). Thus the composite unitary operators
Cb

NS−1
N , b = 0, 1, . . . , N − 1 produce all the bases of the maximal set when applied to

the momentum basis.
In this paper N is not restricted to primes but may take an arbitrary odd value.

Notwithstanding this general situation the formulae derived in the previous section show
that the bases appearing in the short-time propagators, i.e. {|ρ〉} = B(1,0) and

{
CNω

−wl

N |ρ〉} =
B(1,1), are mutually unbiased. Especially, for the short-time propagator∣∣〈ρl+1|CNω

−wl

N |ρl〉
∣∣ = 1√

N
(3)

holds and it is this constant absolute value that entails mutual unbiasedness of the bases
involved. From the physical viewpoint the state evolving after a short time interval ε carries
no information about the preceding state. The trivial information-theoretic meaning of mutual
unbiasedness therefore consists in the fact that in each single evolution step complete loss of
information occurs. Physical information is carried only by the phase factor whose phase is
proportional to the local Lagrangian.

9. Conclusions

The foregoing development of N × N approximations of the Feynman path integral is a
continuation of our previous studies of quantum mechanics over finite configuration spaces
[10, 20] and of discrete path summation [21]. Our approximation method was first applied to
discrete time evolution of an analogue of a quantum free non-relativistic particle in discrete 1+1
space time. The powers of the evolution operator can be interpreted as a unitary representation
in l2(ZN) of an Abelian subgroup of SL(2, ZN) acting on a quantum phase space ZN × ZN.
Generalization of the N × N approximation of the short-time propagator to a particle moving
in a potential turned out to be straightforward.

Summarizing, we have shown explicitly how a Lagrangian arises as a local phase in the
short-time propagator in the N × N approximation, thus confirming Svetlichny’s conjecture.
Our paper also brings definite answers to the questions quoted in the introduction in the case
of a one-dimensional non-relativistic particle moving in a potential field.

(i) Our results concern unitary groups U(t) in L2(R) connected with the time evolution
of a one-dimensional non-relativistic quantum particle moving in a potential field.
Equation (3) shows that position bases involved in the N × N approximation of the
short-time propagator for arbitrary odd N are mutually unbiased. In this sense also in the
limit N → ∞ position bases at times 0 and t do tend to mutual unbiasedness as t → 0.

(ii) Our discrete analogue of quantum evolution of a free particle in a finite-dimensional
Hilbert space which accurately simulates the Galilean evolution of a free particle on the
real line was consistently employed throughout the paper.

(iii) In our paper also the secret of the prefactor A−1 in the short-time propagator is unveiled.
Its dimension must be inverse length in order to compensate the integration over q in the
Feynman path integral. Hence in the N × N approximation it must be related to our unit
of length aηN . Due to ε = ma2/h̄,

aηN

A
= a

√
2π

N

√
m

2πih̄ε
= 1√

iN

holds for single-step time evolution. This relation shows the trivial information-theoretic
meaning of A−1: in the dimensionless expression it is a constant corresponding to
complete loss of information in each single time step.

10
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In connection with the N × N approximation we would like to point out the suggestion
of the approximate solution of the continuous Schrödinger equation. Namely, Digernes,
Husstad and Varadarajan [22] proved a convergence theorem on approximation of continuous
Weyl systems by N × N Weyl operators Q

j

NP σ
N . Further, Digernes, Varadarajan and

Varadhan [23] proved a strong theorem on convergence of eigenvalues and eigenfunctions of
N × N Hamiltonians to solutions of the one-dimensional Schrödinger equation for potentials
satisfying V → +∞ as |q| → ∞, hence possessing a discrete spectrum. This theorem
provides a justification for the approximate solution of the continuous Schrödinger equation.
Numerical calculations showed that the approximation is unexpectedly good even for relatively
small values of N. The generalization of these results in the case of a mixed spectrum remains
open. Let us note that in quantum optics, a discrete phase space Zn × Zn is employed in the
discrete approximation of the quantum phase and the conjugate number operator [24].
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